Dissecting the influence of the collinear and flanking bars in White’s effect
نویسندگان
چکیده
In White's effect equiluminant test patches placed on the black and white bars of a square-wave grating appear different in brightness. The illusion has generated intense interest because the direction of the brightness effect does not correlate with the amount of black or white border in contact with the test patch, or in its general vicinity. Therefore, unlike brightness induction effects such as simultaneous contrast, White's effect is not consistent with explanations based on contrast or assimilation that depend solely on the relative amounts of black and white surrounding the test patches. We independently manipulated the luminance of the collinear and flanking bars to investigate their influence on test patch matching luminance (brightness). The inducing grating was a 0.5c/d square-wave and test patches measured 1.0° in width and either 0.5° or 3.0° in height. Test patches measuring 0.5° in height had more extensive contact with the collinear bars and test patches measuring 3.0° in height had more extensive contact with the flanking bars. The luminance of the collinear (or flanking) bars assumed twenty values from 3.2 to 124.8cd/m(2), while the luminance of the flanking (or collinear) bars remained white (124.8cd/m(2)) or black (3.2cd/m(2)). Under these conditions the influence of the collinear and flanking bars was found to be purely in the direction of contrast. The effect was dominated by contrast from the collinear bars (which results in White's effect), however, the influence of the flanking bars was also in the contrast direction. The data elucidate the luminance relationships between the collinear and flanking bars which produce the behavior associated with White's effect as well as that associated with "the inverted White effect" which is akin to simultaneous contrast.
منابع مشابه
1. White’s effect in lightness, color and motion
In White’s (1979) illusion of lightness, the background is a square-wave grating of black and white stripes (Fig. 1a). Grey segments that replace parts of the black stripes look much lighter than grey segments that replace parts of the white stripes. Assimilation from flanking stripes has been proposed, the opposite of simultaneous contrast. We use colored patterns to demonstrate that the perce...
متن کاملResearch Note White’s Effect and Assimilation
White’s effect is a phenomenon in which grey bars replacing segments of the white phase of a square-wave grating appear darker than those replacing segments of the black phase. The direction of the brightness difference is consistent with brightness assimilation rather than with brightness contrast. We present data from two experiments which measure the degree of the brightness difference in st...
متن کاملNumerical investigation of GFRP bars contribution on performance of concrete structural elements
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elas...
متن کاملCollinearity improves alignment in amblyopia as well as in normal vision
In normal vision, three contrast patches containing black and white bars are aligned more precisely when the bars are collinear across the patches [Popple, A., Polat, U., & Bonneh, Y. (2001). Collinear effects on 3-Gabor alignment as a function of spacing, orientation and detectability. Spatial Vision, 14(2), 139-150]. Normally, offsets between the bars in successive patches make the configurat...
متن کاملMoving Three Collinear Griffith Cracks at Orthotropic Interface
This work deals with the interaction of P-waves between a moving central crack and a pair of outer cracks situated at the interface of an orthotropic layer and an elastic half-space. Initially, we considered a two-dimensional elastic wave equation in orthotropic medium. The Fourier transform has been applied to convert the basic problem to solve the set of four integral equations. These set of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 127 شماره
صفحات -
تاریخ انتشار 2015